

(Subject Code: 17509)

Important Instructions to examiners:

- 1. The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2. The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3. The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4. While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6. In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7. For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1	A	Attempt any three:	12-Total Marks
1	a)	State any eight features of 8051 microcontroller.	4 M
1	a) Ans:	 State any eight features of 8051 microcontroller. It is an 8bit microcontroller. 8bit accumulator, 8bit Register and 8bit ALU. On chip RAM 128 bites (data memory). On chip ROM 4 Kbytes (program memory). Two 16bit counter/ timer. A 16 bit DPTR(data pointer) Two levels of interrupt priority. 4 byte bi-directional input/ output port. Power saving mode (on some derivatives). 16bit address bus:-it can access 2^16 memory locations:-64kb (65536) each of RAM and ROM. It is an inclusion of Boolean processing system, have an ability to allow logic operations to be carried out on registers and RAM. 8bit data bus:-it can access 8bit of data in one operation. It also consist of 3 internal and two external interrupts UART (this serial communication port makes chip to use simply as a serial communication interface) It has four separate Register set. (Each contains 8 Registers (R0 to R7)). 	4 M ¹ / ₂ M Each

7 6 5 4 3 2 1 0 Sign			at of PS	SW reg	gister i	n 8051	micro	contro	ller an	d state	signif	icanc	e of ea	ich bit.	4 M
7 6 5 4 3 2 1 0 Image: Sign and the problem of th	Ans:												Format		
CY AC F0 RS1 RS0 OV - P THE PROGRAM STATUS WORD (PSW) SPECIAL FUNCTION REGISTER Bit Symbol Function 7 CY Carry flag; used in arithmetic, JUMP, ROTATE, and BOOLEAN instructions 6 6 AC Auxilliary carry flag; used for BCD arithmetic 0 1 3 7 CY Carry flag; used in arithmetic, JUMP, ROTATE, and BOOLEAN instructions 6 AC 6 AC Auxilliary carry flag; used for BCD arithmetic 0 0 1 3 RS0 Register bank select bit 1 0 0 1 Select register bank 2 1 1 Select register bank 2 1 1 0 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 1 0 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 1 Select register bank 2 1 1 Select register bank 2 3 P OV Overflow flag; used in arithmetic instructions 1 I Select register bank 2 1<				7	6	5	4	3	2	1	0				2M
THE PROGRAM STATUS WORD (PSW) SPECIAL FUNCTION REGISTER Bit Symbol Function 7 CY Carry flag; used in arithmetic, JUMP, ROTATE, and BOOLEAN instructions 6 AC Auxiliary carry flag; used for BCD arithmetic 5 FO User flag 0 4 RS1 Register bank select bit 1 3 RS0 Register bank select bit 0 RS1 8 QV 0 1 2 OV 0 Verflow flag; used in arithmetic instructions 1 1 2 OV 0 P 9 Parity flag; shows parity of register A: 1 = Odd Parity 8 Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future ve							T			<u> </u>		1			Signific
Bit Symbol Function 7 CY Carry flag; used in arithmetic, JUMP, ROTATE, and BOOLEAN instructions 6 AC Auxilliary carry flag; used for BCD arithmetic 5 F0 User flag 0 4 RS1 Register bank select bit 1 3 RS0 Register bank select bit 0 RS1 Register bank select bit 0 Rs1 Register bank select bit 1 3 RS0 Register bank select bit 0 Image: Register bank select bit 0 RS1 RS0 0 0 Select register bank 1 1 1 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 - Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 Extra contains Several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator i											nce:2M				
 7 CY Carry flag; used in arithmetic, JUMP, ROTATE, and BOOLEAN instructions 6 AC Auxilliary carry flag; used for BCD arithmetic 5 F0 User flag 0 4 R51 Register bank select bit 1 3 R50 Register bank select bit 0 851 R50 0 Select register bank 0 0 1 Select register bank 1 1 0 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large, 															
6 AC Auxiliary carry flag; used for BCD arithmetic 5 F0 User flag 0 4 RS1 Register bank select bit 1 3 RS0 Register bank select bit 0 RS1 RS0 0 0 Select register bank 0 0 1 Select register bank 2 1 0 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a		Bit	Symb	ol f	Functio	n									
 5 F0 User flag 0 4 R51 Register bank select bit 1 3 R50 Register bank select bit 0 R51 R50 0 0 Select register bank 0 0 1 Select register bank 1 1 0 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,		100									BOOL	AN ins	tructio	ns	
4 RS1 Register bank select bit 1 3 RS0 Register bank select bit 0 RS1 RS0 0 0 Select register bank 0 0 1 Select register bank 1 1 0 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,							ag; useo	for BCI	D arithm	etic					
3 R50 Register bank select bit 0 R51 R50 0 0 Select register bank 0 0 1 Select register bank 1 1 0 Select register bank 2 1 0 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 - Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW0 to PSW.7 Bit addressable as PSW0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,							ect bit 1								
0 0 Select register bank 0 0 1 Select register bank 1 1 0 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 - Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,															
0 1 Select register bank 1 1 0 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,							RS1	RSO							
1 0 Select register bank 2 1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,															
1 1 Select register bank 3 2 OV Overflow flag; used in arithmetic instructions 1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,							0	0.0							
 2 OV Overflow flag; used in arithmetic instructions — Reserved for future use P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large, 							1								
1 — Reserved for future use 0 P Parity flag; shows parity of register A: 1 = Odd Parity Bit addressable as PSW.0 to PSW.7 Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. - Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large,		2	OV	(Overflow	flag: us	ed in ar	ithmetic							
 Bit addressable as PSW.0 to PSW.7 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large, 			_					in the content	. mon det						
 PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large, 		· · · · · · · · · · · · · · · · · · ·													
 current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag. P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication. Bit 1. This bit is intended to be used in the future versions of microcontrollers. OV Overflow This flag is set whenever the result of a signed number operation is too large, 		Bit addressable as PSW.0 to PSW.7													
detect errors in unsigned arithmetic operations. The overflow flag is only used to detect errors in signed arithmetic operations				ł	Bit addre	ssable a	s PSW.0	to PSW.	7						

$\lambda^{c^{c}}$ = 2M Expl			RS1	RS0	SPACE IN RAM		
Image: transmission of the interfacting of 3x 3 key matrix with 8051 microcontroller.Image: transmission of the interfacting of 3x 3 key matrix with 8051 microcontroller.A control in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A control in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A control in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A control in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A ms:Image: A microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of 3x 3 key matrix with 8051 microcontroller.A microcontroller.A microcontrol in the interfacting of a microcontrol in the interfacting in the interfac			0	0	Bank0 00h-07h		
1 1 Bank3 18h-1Fh F0 - Flag 0. This is a general-purpose bit available for user. AC - Auxiliary Carry Flag is used for BCD operations only. If there is a carry from D3 and D4 during an ADD or SUB operation, this bit is set. CY - Carry Flag is set whenever there is a carry out from D7 bit. It is affected after all arithmetical operations and shift instructions. It also can be set to 1 or 0 using instructions SETB c and CLR c c) Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. Ans: \sqrt{C} \sqrt{D} \sqrt{C}			0	1	Bank1 08h-0Fh		
F0 - Flag 0. This is a general-purpose bit available for user. AC - Auxiliary Carry Flag is used for BCD operations only. If there is a carry from D3 and D4 during an ADD or SUB operation, this bit is set. CY - Carry Flag is set whenever there is a carry out from D7 bit. It is affected after all arithmetical operations and shift instructions. It also can be set to 1 or 0 using instructions SETB c and CLR c () Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. Ans: Do Do Do Do Do Do Port 1 (out) D 2 D 0 D 2 D 0 Port 2 Port 2			1	0			
AC - Auxiliary Carry Flag is used for BCD operations only. If there is a carry from D3 and D4 during an ADD or SUB operation, this bit is set. CY - Carry Flag is set whenever there is a carry out from D7 bit. It is affected after all arithmetical operations and shift instructions. It also can be set to 1 or 0 using instructions SETB c and CLR c c) Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. Ans: $1 = \frac{\sqrt{C}}{\sqrt{C}}$ $2 = \frac{\sqrt{C}}{\sqrt{C}}$			1	1	Bank3 18h-1Fh		
AC - Auxiliary Carry Flag is used for BCD operations only. If there is a carry from D3 and D4 during an ADD or SUB operation, this bit is set. CY - Carry Flag is set whenever there is a carry out from D7 bit. It is affected after all arithmetical operations and shift instructions. It also can be set to 1 or 0 using instructions SETB c and CLR c c) Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. Ans: $1 = \frac{\sqrt{C}}{\sqrt{C}}$ $2 = \frac{\sqrt{C}}{\sqrt{C}}$		FO - Flag O This is a gener	ral-nurn	ose hit av	ailable for user		
D4 during an ADD or SUB operation, this bit is set. CY - Carry Flag is set whenever there is a carry out from D7 bit. It is affected after all arithmetical operations and shift instructions. It also can be set to 1 or 0 using instructions SETB c and CLR c c) Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. Ans: 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0							
arithmetical operations and shift instructions. It also can be set to 1 or 0 using instructions SETB c and CLR c (c) Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. Ans: $1 = \frac{1}{2} \frac{1}$						e is a carry from D3 and	
It also can be set to 1 or 0 using instructions SETB c and CLR c 4 M c) Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. 4 M Ans: Diago $2M$ \mathcal{A}						is affected after all	
c) Explain the interfacing of 3x 3 key matrix with 8051 microcontroller. 4 M Ans: $1 \frac{1}{2} \frac{1}{2$		arithmetical operations and	d shift in	struction	S.		
Ans: $ \begin{array}{c c} & & & & & \\ \hline & & & \\ \hline & & & & \\ \hline &$		It also can be set to 1 or 0 u	using ins	structions	SETB c and CLR c		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	c)	Explain the interfacing of	f 3x 3 ke	ey matrix	x with 8051 microcontro	oller.	4 M
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ans:	2 ^{cc}					Diagra :2M Explan
$\begin{array}{c c} D_1 \\ D_2 \\ D_2 \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\		—	X	XX) (XX	xe) the		ion:2M
$\begin{array}{c c} D_1 \\ D_2 \\ D_2 \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\			R	1.)		2.14:22)	
$\begin{array}{c c} D_1 \\ D_2 \\ D_2 \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\		Do	/	,e- /		-16.94	
$\begin{array}{c c} D_2 \\ \hline \\ $		D1	5.			~	
$\begin{array}{c c} p_{07} + 1 \\ \hline \\ (out) \end{array} \end{array} \begin{array}{c} D_2 \\ D_1 \\ D_2 \end{array} \begin{array}{c} D_1 \\ D_2 \end{array} \end{array} \begin{array}{c} p_{07} + 2 \\ P_{07} + 2 \end{array}$		Da	8 ;	7	xo yo R	6 (4.92)	
(out) D2 D1 D0 Post 2							
(out) D2 D1 D0 Post 2						ч.	
(out) D2 D1 D0 Post 2						-	
YON Z			^	2			
		(our)		D2	0	Post 2 (TD)	
						レーク	
·			f				

Explanation:

- It is the function of the microcontroller to scan the keyboard continuously to detect and identify the key pressed
- First microcontroller checks whether all keys are open before the start of operation, by grounding all the rows and ensuring that the input port has 111.
- To detect a pressed key, the microcontroller again grounds all rows by providing 0 to the output latch, then it reads the columns
- If the data read from columns is D2 D0 = 111, no key has been pressed and the process continues till key press is detected
- If one of the column bits has a zero, this means that a key press has occurred
- Then the program waits for 20ms (debounce time) and check for the key pressed again. If still the key pressed is detected, it proceeds.
- After detecting a key press, microcontroller will go through the process of identifying the key
- Starting with the top row, the microcontroller grounds it by providing a low to row D0 only
- It reads the columns, if the data read is all 1s, no key in that row is activated and the process is moved to the next row
- It grounds the next row, reads the columns, and checks for any zero
- This process continues until the row is identified
- After identification of the row in which the key has been pressed Find out which column the pressed key belongs to
- Upon finding the row that the key press belongs to, it sets up the starting address for the look-up table holding the scan codes (or ASCII) for that row
- To identify the key press, it rotates the column bits, one bit at a time, into the carry flag and checks to see if it is low
- Upon finding the zero, it pulls out the ASCII code for that key from the look-up table
- Otherwise, it increments the pointer to point to the next element of the look-up table

d) State any four C data types with their value range.

1 M Data Type Size in Bits Data Range/Usage Each unsigned char 8-bit 0 to 255 (signed) char 8-bit -128 to +127 unsigned int 16-bit 0 to 65535 (signed) int 16-bit -32768 to +32767 SFR bit-addressable only sbit 1-bit RAM bit-addressable only bit 1-bit RAM addresses 80 - FFH only sfr 8-bit

4 M

B)	Attempt any one:	6 M
a)	Draw internal RAM organization of microcontroller 8051 and show address areas for each Section.	6 M
Ans:	Byte Address Bit address b7b6 b5 b4 b3 b2 b1 b0 7Fh General purpose RAM area. 80 bytes 30h 2Fh 7F 78 2Dh 6F 68 2Ch 67 60 2Bh 5F 58 2Ah 57 50 29h 4F 48 28h 47 40 27h 3F 38 26h 37 30 25h 2F 28 24h 27 20 23h 1F 18 22h 17 10 21h 0F 08 20h 07 00 11h Regs 07 (Bank 1) 00h	6M
	10h Regs 07 (Bank 1) Register Bank 0 08h 07h Regs 07 (Bank 0) 07h Reg. 7 00h 06h Reg. 6 05h Reg. 5 00h 05h Reg. 4 03h Reg. 3 02h Reg. 2 01h Rcg. 1 00h Rcg. 0	

	b)	Write an ALP to find the largest number in an array of 10 numbers stored in internal RAM	6 M
	Ans:	ORG 0000H MOV R1,#0AH MOV R0,#40H DEC R1 MOV 60H, @R0 UP: INC R0 MOV A, @R0 CJNE A,60H,DN AJMP LARGE DN: JC LARGE MOV 60H, A LARGE: DJNZ R1, UP END (Any other relevant correct logic can be given full marks)	6M
Q 2		Attempt any two:	16M
	a)	Write a assembly language program for 8051 microcontroller to generate a delay of 1 second. Use timerl.Assume crystal frequency =12 MHz. Draw flowchart.	8M
	Ans:	Calculations: Crystal freq = 12MHz Timer frequency= 12MHz/12= 1MHz Input Time= 1/1MHz= 1us For delay of 50ms 50ms/1us= 50000 Therefore count to be loaded in TH1 and TL1 can be calculated as 65536-50000= 15536d = 3CB0H Program: MOV TMOD, #10H ; Timer 1 , mode 1 HERE: MOV R0, #20 ; counter for 1s delay (50ms*20=1sec) CPL P2.0 ; complement P2.0 BACK: MOV TL1, #0B0H ; load count value in TL1 MOV TH1, #3CH ; load count value in TH1 SETB TR1 ; start Timer1 AGAIN: JNB TF1, AGAIN ; stay until timer rolls over CLR TR1 ; stop timer CLR TF1 ; clear timer flag DJNZ R0, BACK ; if R0 is not equal to 0, reload timer SJMP HERE ; repeat	calculati on:1m, Program : 3M, comment s:1M flowchar t:3M

Ans:	8051 Microcontroller	Diagram :4M, Flowcha rt:4M
c)	Draw interfacing diagram of stepper motor control with 8051 microcontroller. Draw flow chart to rotate a stepper motor clockwise through 360°. Assume step angle of 1.8 $^\circ$.	8M
	}	
	P1=ACC; //display data on P1	
	CS=1; //deselect ADC	
	}	
	// for all 8 bits	
	ACC=ACC <<1; //Keep shifting data	
	//pin to DO of Reg A	
	LSBRA=DOUT; // bring in bit from DOUT	
	Delay()	
	SCLK=0;	
	Delay();	
	SCLK=1	
	{	
	for (x=0; x<8; x++) //get all 8 bits	
	Delay();	

	Attempt any four:	16M
a)	Draw neat labeled interfacing diagram of LCD with 8051 microcontroller.	4 M
Ans:	LCD DISPLAY	Diagran :4M
	8 P2.0 0 P2.1 5 P2.2 1 P1.0 P1.7	
b) Ans:	Sr.No Von Neumann architecture Harvard architecture 1 1 1	
/	Sr.No Von Neumann architecture Harvard architecture 1 Image: Data and data memory Program and data memory Data Image: Data I	Any fou points:4
/	Sr.No Von Neumann architecture Harvard architecture 1 Image: Data and data memory Program and data memory Data Data Data Mem ory 2 The Von Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data. 3 Requires single bus for instructions and data Requires separate & dedicated buses for	Any fou points:4
/	Sr.No Von Neumann architecture Harvard architecture 1 Image: Data and data and data memory Program and data memory Data Data Data Memory 2 The Von Neumann architecture uses single memory for their instructions and data. The Harvard architecture uses physically separate memories for their instructions and data.	Any fou points:4

c)		1
	Write down instructions to READ input port and send hex data to output port using	4M
	"C"operators.	(3.5
Ans:	<pre>#include <reg51.h></reg51.h></pre>	4M
	void main(void)	
	P1=0xFF; //make P1 input port	
	P3=0x00; //make P0 output port	
	while (1)	
	$^{1}_{P3=P1;}$	
	Note: Any other correct program logic can be given marks.	
d)	Describe timer operations of 8051 microcontroller in mode 1 and mode 2 with respect	4 M
	to application and advantages.	
Ans:	Mode 1 - 16-bit mode	Mode1:2
		Μ
		Mode2:2
	$clock \longrightarrow TLx THx \longrightarrow TFx$	Μ
	overflow flag	
	mode 1	
	The high byte (THx) is cascaded with the low byte (TLx) to produce a 16-bit timer. This timer counts from 0000H to FFFFH - it has 2 ¹⁶ (65,536) states. An overflow occurs during the FFFFH to 0000H transition, setting the overflow flag. This is a very commonly used mode to generate time delay using 16bit count. Mode 2- 8-bit auto-reload mode	

e)	Describe stack operations in 8051 microcontroller with suitable examples.	4M							
Ans:	Stack Memory is a part of internal data memory which is used for temporary data storage in	PUSH							
	8051.Stack pointer is used to point to stack memory. Data is stored in stack memory using PUSH instruction and is retrieved using POP instruction.	operatio n:2M							
	PUSH operation								
		operatio n :2M							
	The PUSH instruction increments the stack pointer and stores the value of the specified byte								
	operand at the internal RAM address indirectly referenced by the stack pointer.								
	07h								
	06h Register								
	05h								
	04h 21 56 45 78 98 34 32 12								
	03h 02h 1st in 08h 09h 10h								
	02h Stack Pointer 01h Stack Pointer								
	00h 21 1St Out								
	Stac Memory								
	Stat Memory								
	POP Operation								
	pushing. With every pop, the top byte of the stack is copied to the register specified by the instruction and the stack pointer is decremented once.								
	State -								
	07h 06h 05h 04h 04h 02h 01h 02h 00h 12 1st ln 08h 09h 10h 12 1st Out								
	05h 04h 03h 02h 02h 01h 32 00h 12								
	05h 04h 03h 02h 01h 00h 12 1St Out								

<u>17509</u>

b)	Write C language program to toggle a bi Use timer 0, mode 2. Assume crystal free	it of P 1.5 continuously with 250 msec. delay. (n. 11.0592 MHz.	4 M					
Ans:	Solution: CALCULATIONS Delay of 250ms=1000 X 250us For 250us, calculation of count Crystal frequency= 11.0592 MHz I/P clock = (11.059 X 10^{6})/12= 1000000 = 921.58KHz T-XTAL= $1/f$ -XTAL = $1/921.58 \times 10^{6}(3)$ = $1.085us$ 256-count = 250us/1.085us=230.42 The count which is to be loaded in timer register=256-230=26 decimal=1AH. Load TL and TH with 1AH. PROGRAM: #INCLUDE <reg51.h> SBIT TOGGLE = P1^5; UNSIGNED INT X; TMOD=0X02; WHILE(1) { TL0=0XIA; TOGGLE=-TOGGLE TR0=1; FOR (X=0;X<1000;X++) { WHILE(TF0==0); TF0=0;</reg51.h>							
	TRO-O							
	TR0=0; }							
c) Ans:	TR0=0; } Compare RISC and CISC machines with RISC	n examples.	4 M Example					

d)	Describe oper	ations of DPTR re	gister in 8051, aloı	ng with related instructions.	4 M
Ans:	• The SFRs.	DPL and DPH wor	k together to repres	ent a 16- bit value called Data Pointer.	Operatio
	DPTR	DPH	DPL]	ns:2m, related instructi
	 The Data P external da Since the S where DPL the DPTR. For example 2500h, you M M Mov M Note the M MOV DPT (DPTR) MOVC A, Operation: 	Pointer, DPTR, is a sta memory. FR registers are justices (82h) holds the low (82h) holds the low (82h) holds the low (82h) holds the low (00 A, #46h (10 C) (special 16-bit regist t 8-bits wide the DI v byte of the DPTR write the value 46h wing instructions: ;Move immediate ; Move immediate ; Now DPL holds 0 ; Move the value 2500h.Uses indir	the high byte DPH and low byte DPL. er used to address the external code or PTR is stored in two SFR registers, and DPH (83h) holds the high byte of to external data memory location 8 bit data 46h to A (accumulator) 16 bit address value 2504h to A. 4h and DPH holds25h. in A to external RAM location ect addressing. access external memory	instructi ons:2m
B)	Attempt any o	me:			6M
a)	L V	four assembler dir	ectives used in 805	1 programing.	6M
Ans:	i)DB ii) ORG i) <u>DB:</u> LABH Where byte is There should The colon (:) program. The	EXAMPLE 1 iii) EQU iv) F EL: an 8-bit number report be at least one space must present after la label will be used i be between DB & a	CND DB presented in either e between label & I abel. This directive n program instead of	BYTE binary, Hex, decimal or ASCII form.	Each directive : 1 ^{1/2} Marks
	It is used to de Syntax: Name	efine constant witho		mory location. Constant	

	EQU 99 After this assembler v	of this directive, a numeric value is replaced by a symbol. For e.g. MAXIMUM directive every appearance of the label "MAXIMUM" in the program, the will interpret as number 99 (MAXIMUM=99).									
	iii) ORG: OriginIt is used to indicate the beginning of address.										
Syntax: ORG Address											
			OKG			Addr	ess				
	The address can be given in either hex or decimal there should be a space of at least one character between ORG & address fields. Some assemblers use ORG should not begin in label field.										
 iv) END: This directive must be at the end of every program. meaning that in the source constrained anything after the END directive is ignored by the assembler. This indicates to the assembler the end of the source file (asm). Once it encounters this directive, the assembler will stop interpreting program into machine code. e.g. END ; End of the program 											
 b)	Draw the fo	rmat of	f TCO	N regis	ter in 8	8051 ar	nd deso	ribe i	n shor	t.	6M
Ans:									ESSABLE.	Format 2 M Descripti on:	
		TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		4 M
	 TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 Overflows. Cleared by hardware as processor vectors to the interrupt service routine. TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/OFF. 								y hardware as		
	TF0 TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hardware as processor vectors to the service routine.										
	TR0 TCON. 4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.										
	IE1	TCO	N. 3	Extern		rupt ec	lge is d	letecte	•	rdware when ared by hardware	
	IT1	TCO	N. 2	Inter	rupt 1 ty	ype cor	ntrol bi	t. Set/c	cleared	by software	

set baud rate.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		X	··· ··· ··· ··· · ··· · · · · · · · ·	
			Fo specify falling edge/low level triggered External Interrupt.	
]	External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared by hardware When interrupt is processed.	
		s	nterrupt 0 type control bit. Set/cleared by software to pecify falling edge/low level triggered External nterrupt	
0.5				16 34
Q.5	-)	Attempt any <u>two</u> :		16 M
	a)	wave of 2 KHz frequency on	program for 8051 microcontroller to generate a square Pin P 1.5. Assume crystal freqn. = 11.0592 MHz.	8 M
	Ans:	Crystal frequency= 11.059	92 MHz b)/12= 1000000 = 921.58KHz = 250μ sec 35 = 230.41 (FF19)16 ; SET TIMER 0 IN MODE 1, I.E., 16 BIT TIMER	Calculati on:3M, Program : 4M, comment :1M

<u>17509</u>

	baud rate of 4800, 8 bit data and 1 stop bit. Assume crystal freqn. = 11.0592 MHz.	0
Ans:	Required bandrate = 4800	Correc Progra
	5000	: 5M
	2 × fosc	Calcul
	- 4800	on: 2 N
	$32 \times 12 (256 - count) = 4800$	commo :1M
	$2^{\circ} \times 11.0592 \times 10^{6} = 4800$ $32 \times 12 (256 - 000t)$	
	$256 - count = \frac{11.0592 \times 10^6}{32 \times 12 \times 4800} = 6$	
	Count = 256-6 = 250D = FAH	
	500 h = 2500 = FAH	
	Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud	
	Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) {</reg51.h>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte;</reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate</reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCCN=0x50;</reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCCN=0x50;</reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCON=0x50; TR1=1; //start timer while(1) //repeat forever { }</reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCCN=0x50; TR1=1; //start timer while(1) //repeat forever { while(RI==0); //wait to receive } } </reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCON=0x50; TR1=1; //start timer while(1) //repeat forever { while(RI==0); //wait to receive mybyte=SBUF; //save value</reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCCN=0x50; TR1=1; //start timer while(1) //repeat forever { while(RI==0); //wait to receive } } </reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCCN=0x50; TR1=1; //start timer while(1) //repeat forever { while(RI==0); //wait to receive mybyte;SBUF; //save value P1=mybyte; //write value to port</reg51.h></pre>	
	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCCN=0x50; TR1=1; //start timer while(1) //repeat forever { while(RI==0); //wait to receive mybyte;SBUF; //save value P1=mybyte; //write value to port</reg51.h></pre>	
c)	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1, 8-BIT auto-reload TH1=0xFA; //4800 baud rate SCON=0x50; TR1=1; //start timer while(1) //repeat forever { while(RI==0); //wait to receive mybyte;SBUF; //save value P1=mybyte; //write value to port RI=0; } } What is integrated development environment for microcontroller based systems?</reg51.h></pre>	8 M
c)	<pre>Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit. Solution: #include <reg51.h> void main (void) { unsigned char mybyte; TMOD=0x20; //use Timer 1,8-BIT auto-reload TH1=0xFA; //4800 baud rate SCCN=0x50; TR1=1; //start timer while(1) //repeat forever { while(RI==0); //wait to receive mybyte; //save value P1=mybyte; //write value to port RI=0; } }</reg51.h></pre>	8 M IDE-4

Simulators, Editors, compilers, Assemblers etc. Some of the functions of IDE are:

- Provides Windows on the screen for the detailed information of source code part with labels, registers as the execution continues, status of peripheral devices, status of RAM and ports etc.
- Verifies the performance of a target system that an emulator built into the development system, which remains independent of a particular targeted system
- Includes a logic analyzer for up to 256 or 512 transactions on the address and data buses after triggering
- Simulates on a host system (PC), the hardware unit like emulator, peripherals, and I/O devices.

Simple IDE

• Debug by single stepping.

IDE for Various types and Versions of Microcontroller with Upgradability of IDE for future Versions.

Features of Keil:

- The μ Vision IDE combines project management, run-time environment, build facilities, source code editing, and program debugging in a single powerful environment.
- µVision is easy-to-use and accelerates your embedded software development.
- µVision supports multiple screens and allows you to create individual window layouts anywhere on the visual surface.
- The μ Vision Debugger provides a single environment in which you may test, verify, and optimize your application code.
- The debugger includes traditional features like simple and complex breakpoints, watch windows, and execution control and provides full visibility to device

		perip	herals.		
Q.6		Attempt any			16 M
	a)	Draw format of IE register in 8051 microcontroller and explain each bit.		4 M	
	Ans:	(MSB) EA	ES ET	1 EX1 ET0 EX0 (LSB)	Format: 2M Explanat ion:2m
		Symbol	Position	Name and Significance	
		EA	IE.7	EA = 1, interrupts are enabled and will be responded to if their corresponding bits in IE are high. If $EA = 0$, no interrupt will be responded to, even if the associated bit in the IE register is high.	
		-	IE.6	(Reserved)	
		-	IE.5	(Reserved)	
		ES	IE.4	Enable Serial port control bit Set/cleared by software to enable/disable interrupts from Tl or Rl flags.	
		ET1	IE.3	Enable Timer 1 control bit. Set/cleared by software to enable/disable interrupts from timer/counter 1	
		EX1	IE.2	Enable External interrupt 1 control bit. Set/cleared by software to enable/ disable interrupts from INT1.	
		ET0	IE.1	Enable Timer 0 control bit Set/cleared by software to enable/disable interrupts from timer/counter 0.	
		EX0	IE 0	Enable external interrupt 0 control bit. Set/cleared by software to enable/disable interrupts from INTO.	
	b)	Draw and ex	xplain the i	nterfacing of ADC with 8051 microcontroller.	4 M

Ans:	P1.0-1.7 P2.0 P2.1 B051 P2.2 P2.3 P2.4 P2.5 P2.6 P2.6 D0-D7 ADD A ADD B ADD C START ADC 0808 ALE Output Enable EOC Clock	Diagram :2M Explanat ion:2M
	 ADC808 Chip with 8 analog channels. This means this kind of chip allows to monitor 8 different transducers. ALE: Latch in the address Start : Start of conversion OE: output enable EOC: End of Conversion Select an analog channel by providing bits to A, B, and C addresses. Activate the ALE pin. It needs an Low-to-High pulse to latch in the address. Activate SC (start conversion) by an High-to-Low pulse to initiate conversion. Monitor EOC (end of conversion) to see whether conversion is finished. Activate OE (output enable) to read data out of the ADC chip. A High-to-Low pulse to the OE pin will bring digital data out of the chip. 	
c)	Write an ALP for 16 bit multiplication. Assume numbers to be stored in internal RAM.	4 M
c) Ans:	Write an ALP for 16 bit multiplication. Assume numbers to be stored in internal RAM.(Assume first 16-bit number is stored in 40H and 41H and second 16-bit number is stored in 42H and 43H.;Result is in 20H,21H,22H & 23H)MOV R1,41H MOV R2,43H MOV R3,40H MOV R4,42HMOV A,R3 MOV B,R4 MUL AB MOV 20H,A MOV 21H,BMOV A,R3 MOV B R2 MUL AB	4 M 4M

		·
	ADDC A,21H	
	MOV 21H,A	
	MOV A,B	
	ADDC A,22H	
	MOV 22H,A	
	MOV A,R1	
	MOV B,R2	
	MUL AB	
	ADDC A,22H	
	MO 22H,A	
	MOV A,B	
	ADDC A,#00H	
	MOV 23H,A	
	END	
	(Program with any other relevant logic can be given full marks)	
d)	State and explain the interrupts used in 8051 microcontroller.	4 M
Ans:	The 8051 provides five interrupt sources. These are listed below as per their default priority	4 M
	are:	
	1. Timer 0 (TF0)	
	2. External hardware interrupt, INT0	
	3. Timer 1 (TF1)	
	4. External hardware interrupt, INT1	
	5. Serial communication interrupt TI and RI	
	TIMER FLAG INTERRUPT:	
	When a timer/counter overflows, the corresponding timer flag, TF0 or TF1, is set to 1.	
	This can cause Timer 0 or Timer 1 interrupts. The flag is cleared to 0 when the resulting	
	interrupt generates a program call to the appropriate timer subroutine in memory.	
	EXTERNAL INTERRUPTS:	
	Pins INTO and INT1 are used by external circuitry. Inputs on these pins can set the	
	Interrupt flags IE0 and IE1 in TCON register to 1 by two different method. The IEX	
	flags may be set when the INTX pin signal reaches a low level, or the flags may be set	
	when a high-to-low transition takes place on the INTX pin. Bits ITO and IT1 in TCON	
	program the INTX pin for low level interrupt when set to 0 and program the INTX pins	
	for transition interrupt when set to 1.	
	SERIAL PORT INTERRUPT:	
	If a data byte is received serially an interrupt bit ,RI, is set to 1 in the SCON register.	
	When a data byte has been transmitted serially an interrupt bit, TI, is set in SCON.	
	<u> </u>	

e)	Draw neat labeled interfacing diagram to control a lamp at pin P1.0, by using Optoisolator with 8051 microcontroller.	4 M
Ans:	$ \begin{array}{c} $	4M