

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

17509

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer				Marking Scheme
Q.1	(A)	Attempt any THREE:				12-Total Marks
	a)	Draw symbol and write truth table for AND a	nd EXC	OR ga	ite.	4M
	Ans:	Symbol and truth table of AND gate				Each symbol 1M
			Inpu	its	Output	Each TT
		_	A	В	O	1M
		Inputs A O output	0	0	0	
		0 = A.B	1	0	0	
		Symbol		Trut	h table	
		Symbol and truth table of EXOR gate				
			Input	ts	Output	
			A	В	0	
		Innuts A	0	0	0	
		Inputs O output	0	1	1	
		O=A+B	1 1	1	0	
		VALUE AND AD A		Touth	table	
		Symbol		iruui	Cabie	

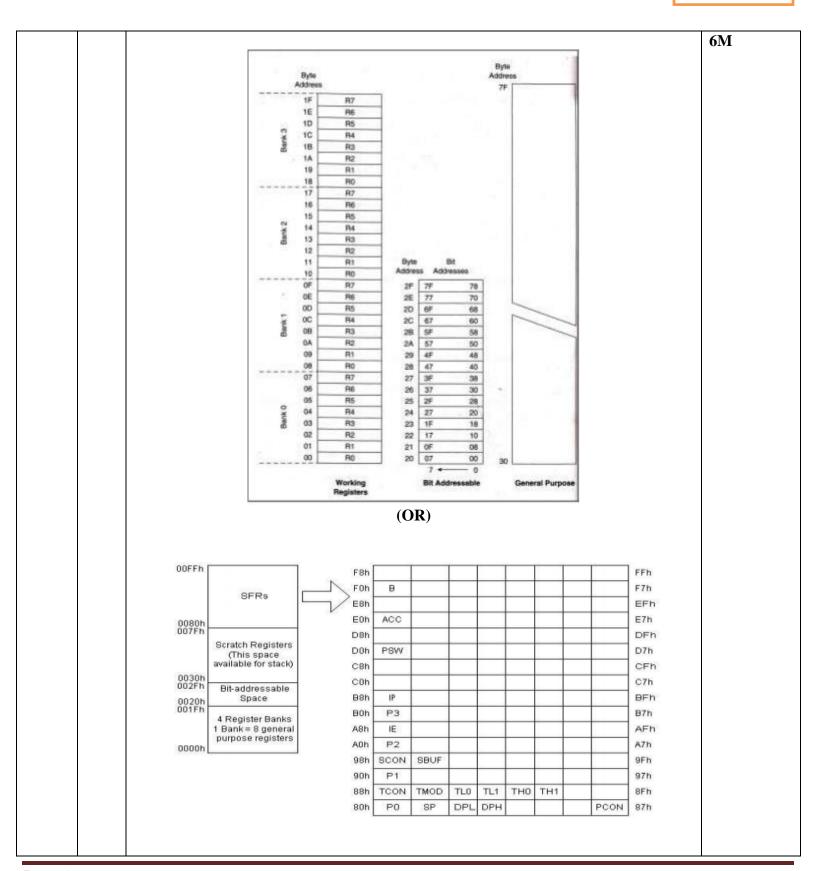
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

Ans:	SCON Register form	nat-						Correct
	SM0 SM1	SM2	REN	TB8	RB8	TI	RI	format 4
c)	List any four C-d	ata types	with its ra	nge and s	size.			4M
Ans:								Any 4-11
	Data Type	Size in	Bits	Data	Range/U	sage		cacii
	unsigned char	8-bit		0 to 2	55		-	
	(signed) char	8-bit		-128 t	o +127			
	unsigned int	16-bit		0 to 6	5535			
	(signed) int	16-bit		-3276	8 to +327	67		
	sbit	1-bit		SFR bi	it-address	able onl	у	
	bit	1-bit		RAM b	it-addres	sable on	ly	
							(A)	
d)	Sfr Compare 8051 and	8-bit ad 8052 m	icrocontro	RAM a	ddresses			4M
d) Ans:	Compare 8051 an	ıd 8052 m		RAM a	ddresses			Any 4
	Compare 8051 an	nd 8052 m 8051	8052	RAM a	ddresses			
	Compare 8051 and Feature ROM(bytes)	8051 4K	8052 8K	RAM a	ddresses			Any 4 points-1
	Compare 8051 an	nd 8052 m 8051	8052	RAM a	ddresses			Any 4 points-1
	Feature ROM(bytes) RAM(bytes)	8051 4K 128	8052 8K 256	RAM a	ddresses			Any 4 points-1
	Feature ROM(bytes) RAM(bytes) Timers	8052 m 8051 4K 128 2	8052 8K 256	RAM a	ddresses			Any 4 points-1
	Feature ROM(bytes) RAM(bytes) Timers I/O pins Serial Port Interrupts	8051 4K 128 2 32	8052 8K 256 3	RAM a	ddresses			Any 4 points-1
	Feature ROM(bytes) RAM(bytes) Timers I/O pins Serial Port	8051 4K 128 2 32	8052 8K 256 3	RAM a	ddresses			Any 4 points-1
	Feature ROM(bytes) RAM(bytes) Timers I/O pins Serial Port Interrupts	8051 4K 128 2 32 1 6 No	8052 8K 256 3 32 1	RAM a	ddresses			Any 4 points-1
Ans:	Feature ROM(bytes) RAM(bytes) Timers I/O pins Serial Port Interrupts Watchdog timer	8051 4K 128 2 32 1 6 No	8052 8K 256 3 32 1 8 No	RAM a	ddresses			Any 4 points-1 each



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

b)	Explain following instructions with example. i)MOVC A,@A+DPTR ii)DAA iii)XCHD A,@Ri	6M
Ans:	i)MOVC A,@A+DPTR The instruction moves data from the external code memory to the accumulator. The address of operand in this example is formed by adding the content of the DPTR register to the accumulator value. Here the DPTR value is referred to as the base address and the accumulator value is referred to as the index address. No of bytes: 1 byte .Addressing mode: register ii)DAA DA A -Decimal Adjust Accumulator DA adjusts the contents of the Accumulator to correspond to a BCD (Binary Coded Decimal) number after two BCD numbers have been added by the ADD or ADDC instruction. If the auxiliary carry bit is set or if the value of bits 0-3(lower nibble)exceed 9, 0x06 is added to the accumulator. If the carry bit is set or if the value of bits 4-7 (higher nibble) exceed 9, 0x60 is added to the accumulator. No of bytes: 1 byte .Addressing mode: register For eg. A=0Ch After execution A=12 BCD iii)XCHD A,@Ri Exchange Digit-Exchanges bits 0-3 of the Accumulator with bits 0-3 of the Internal RAM address pointed to indirectly by R0 or R1. Bits 4-7 of each register are unaffected. No of bytes: 1 byte .Addressing mode: register indirect.	Each instruction 2M

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

(a) Ans:	Write an ALP to arrange 10 bytes in internal RAM location in ascending order.	8M
Ans:		OIVI
	Set counter value Initialize outer counter Initialize inner counter Initialize memory pointer Compare two numbers Increment carry Hag No Pointers Exchange two numbers Decrement inner counter	Flowchart 3M Program 5M
	Decrement outer counter No counter=0 Yes No counter=0	
	Stop	

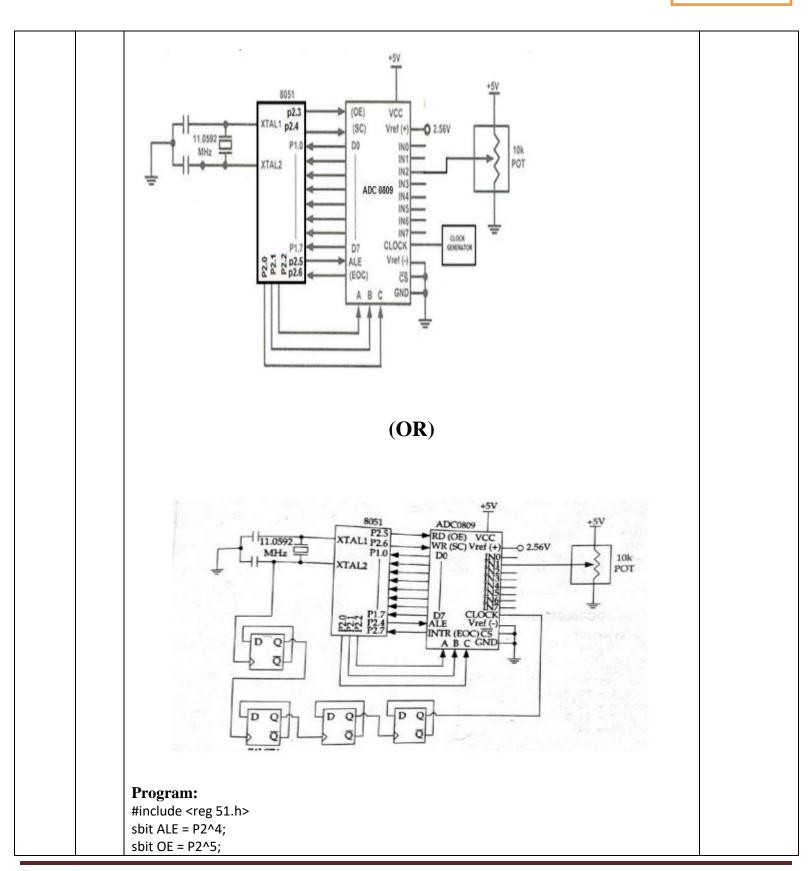
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

	Program:	
	MOV R3,#09H	
	L2:MOV R2,#09H	
	MOV R0,#30H	
	L1:MOV A,@R0	
	INC R0	
	SUBB A,@R0	
	JC L0	
	MOV A,@R0	
	DEC R0	
	XCH A,@R0	
	INC R0	
	MOV @R0,A	
	L0:DJNZ R2,L1	
	DJNZ R3,L2	
	END	
(b)	Interface ADC 0809 to 8051 and write c program to read analog data at CH7 and convert it to digital	8M
Ans:	Interfacing of ADC with 8051:	Diagram 4M Program 4M



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

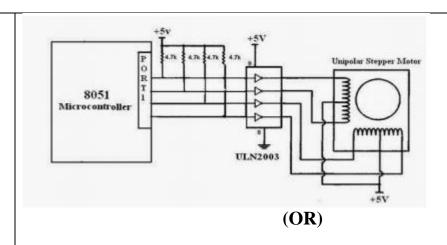
MODEL ANSWER WINTER- 17 EXAMINATION

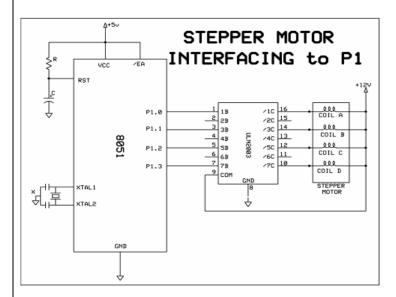
Subject Title: Microcontroller and applications

Subject Code:

Ans:	Stepper motor interfacing-	Diagran 4M
(c)	Interface stepper motor with 8051 and explain logic to rotate it clockwise by 360. Assume step angle 1.8.(No program).	8M
	}	
	for (j=0;j<1275;j++);	
	{	
	for(i=0;i <itime;i++)< td=""><td></td></itime;i++)<>	
	{ Int i,j;	
	Void Msdelay(unsigned int itime)	
	} }	
	OE = 0;	
	value = MYDATA;	
	MSDelay(1);	
	while(EOC==0); OE = 1;	
	while(EOC==1);	
	SC = 0;	
	ALE = 0;	
	MSDelay (1);	
	SC = 1;	
	ALE = 1; MSDelay(1);	
	MSDelay(1);	
	ADDR_A = 1;	
	ADDR_B = 1;	
	{ADDR_C = 1;	
	while(1)	
	SC = 0;	
	ALE = 0; OE = 0;	
	EOC = 1; ALE = 0;	
	MYDATA = OxFF;	
	unsigned char value;	
	\{	
	void main()	
	Void MSdelay(void);	
	Sfr MYDATA = P1;	
	sbit ADDR_C = P2^1; sbit ADDR_C = P2^2;	
	sbit ADDR_A = P2^0; sbit ADDR_B = P2^1;	
	sbit EOC = P2^7;	
	sbit SC = P2^6;	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)


MODEL ANSWER WINTER- 17 EXAMINATION


Subject Title: Microcontroller and applications

Subject Code:

17509

Logic 4M

Logic: (any other similar logic can be considered)

- Step angle is defined as the minimum degree of rotation with a single step.
- No of steps per revolution = 360° / step angle
- step angle = 1.8°
- No of steps per revolution = 200.
- The coils need to be energized for the rotation. This can be done by sending a bits sequence to one end of the coil from microcontroller port while the other end is commonly connected.
- The bit sequence sent can make either one phase ON or two phase ON for a full

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

step sequence or half step sequence.
• Stepper motor rotates 1.8° for each sequence
After each sequence a delay is provided and procedure is repeated for 200 steps
to get the required rotation of 360.

Q. No.	Sub. Q. No	Answer	Marking Scheme
3		Attempt any four	16 marks
	a	Write the function of ALE and PSEN pins of 8051.	4 marks
	Ans.	1. PSEN	2 marks each
		It is active low output control signal. It is used to fetch code from external program	
		memory by activating enable signal OE of the external ROM/ EPROM	
		2. ALE	
		ALE (address latch enable) is an active high output pin. It is used for demultiplexing the	
		lower order address and data. There are two ALE pulses per machine cycle. The ALE	
		pulse is generated every time an external memory is accessed.	
	b	What will be the content of PSW after addition of 2Bh and 9Dh?	4 marks
	Ans.	<u>111 111</u>	1 mark for
		2Bh- 0010 1011	calculation,
		9Dh- 1001 1101	1 mark each
		After adding the two 11001000 – C8h	for CY, AC
		$\mathbf{CY} = 0$ (no carry)	& P values
		$\mathbf{AC} = 1$ (Auxiliary is 1)	
		$\mathbf{P} = 1 \text{ (odd no. of 1s)}$	
		OV = 0	
		F0, RS1, RS2 remain unchanged	
	c	Which are the components of IDE? Write function of any 4.	4 marks
	Ans.	Components of IDE:	List:2 Mark

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

17509

- Compiler
- Cross assembler
- Cross compiler
- Linker/ Locators
- Loaders
- Simulators
- Debugger

Function: (Any four component)

Compiler:

It is a computer program that transforms the source code written in a programming or source language into another computer language i.e. target language i.e. binary code known as object code.

Cross assembler:

It is useful to convert object codes for microcontrollers or processor to other codes for another microcontrollers or processor and vice versa.

Cross compiler:

It is used to create executable code other than one on which the compiler is run.

They are used to generate executable for embedded systems or multiple platforms.

Linker/Locator:

It is used for relocation process.

It is done during compilation also it can be done at run time by a relocating loader.

It is a program that takes one or more objects generated by compiler and combines them into a single executable program.

Simulators:

A simulator is the software that simulates an hardware unit like emulator, peripheral, network and I/O devices on a PC. It defines a processor or processing device as well as various versions for the target system. It also monitors the detailed information as source code part with labels and symbols during the execution for each single step. It provides the detailed information of the status of memory RAM and simulated ports, simulated peripheral devices of the defined target system.

Each

Function-

 $\frac{1}{2}$ M

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

		Debu	gger:		
		It is a	program that is used to test a	and debug the target program. Debugger allows to	
		down	load code to the Emulator's r	memory and then control from PC. It also allows the	
		progr	rammer to examine and modi	ify the On-chip register and program memory data	
d	d	Comp	pare Von Neumann and Ha	rvard architecture.	4 marks
A	Ans.	(Any	four points)		1 mark for
		Sr.	Von-Neumann	Harvard architecture	each correct
		No.	architecture		point
		1	Uses single memory for instruction and data	Uses separate memory for instruction and data	
		2	Same bus is used for	Requires separate and	
			instruction and data memory	Dedicated buses for instruction and	
				data memory	
		3	Design is simpler	Design is complicated	
		4	Instruction and data has	Instruction and data can be	
			to be fetched sequentially	fetched simultaneously	
		5	Address & Data Bus		
			Microprocessor Instruction & data memory	Address & Data Bus Address & Data Bus Instruction Microprocessor Data memory Data memory	
e	2	List n	nodes of serial communicat	ion in 8051. Explain mode 3 in detail.	4 marks
					1 mark for

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

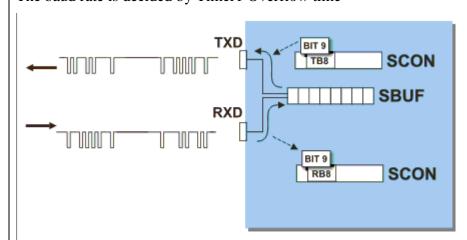
17509

list, 3 marks

explanation

for correct

Ans.


Modes of Serial communication:

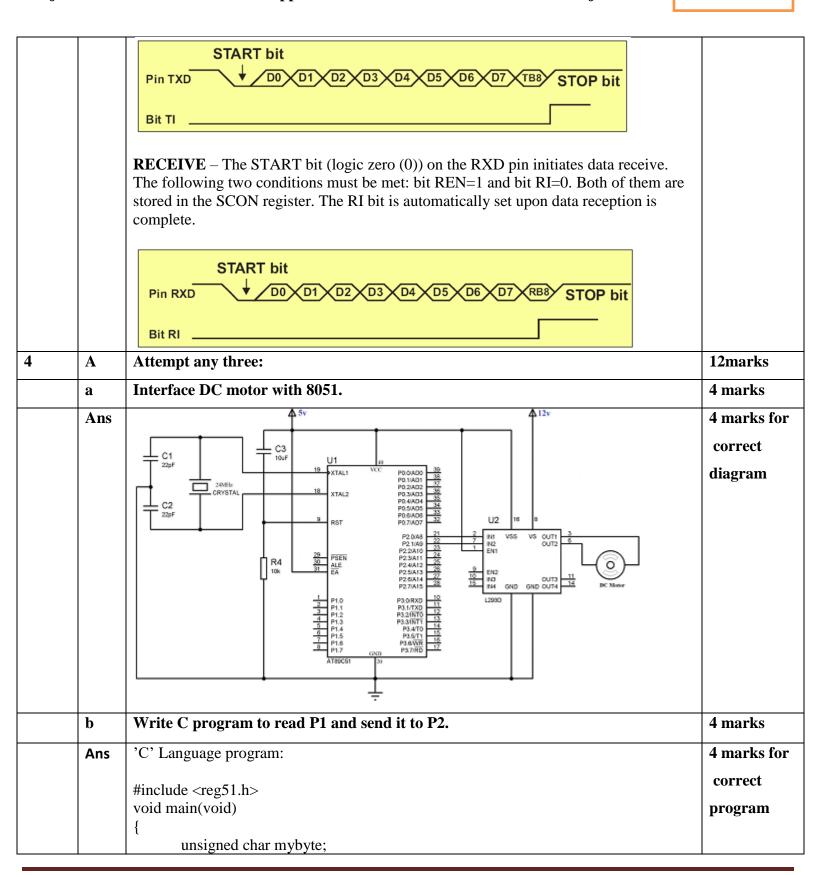
SM0	SM1	Mode	Baud Rate
0	0	Mode 0	f/12
0	1	Mode 1	Variable determined by Timer 1
1	0	Mode 2	f/32 or f/64
1	1		Variable determined by Timer 1

Mode 3

In mode 3, 11 bits are transmitted through the TXD pin or received through the RXD pin: a START bit (always 0), 8 data bits (LSB first), a programmable 9th data bit and a STOP bit (always 1). On transmit, the 9th data bit is actually the TB8 bit of the SCON register. This bit usually has a function of parity bit. On receive, the 9th data bit goes into the RB8 bit of the same register (SCON).

The baud rate is decided by Timer1 Overflow time

TRANSMIT – Data transmit is initiated by writing data to the SBUF register. End of data transmission is indicated by setting the TI bit of the SCON register.

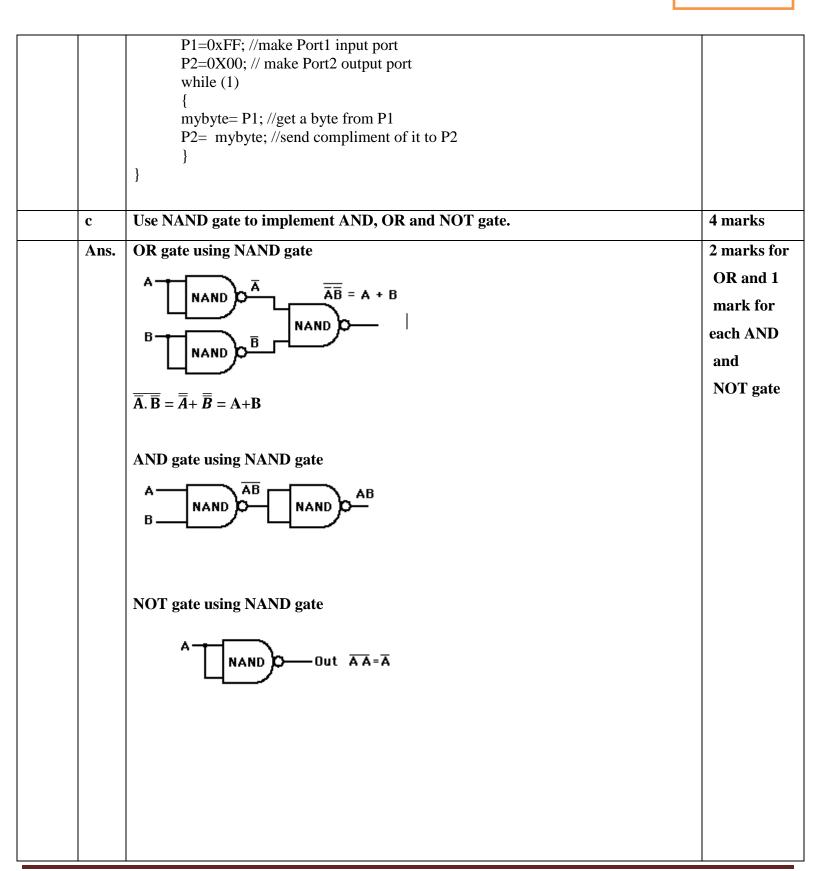


(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

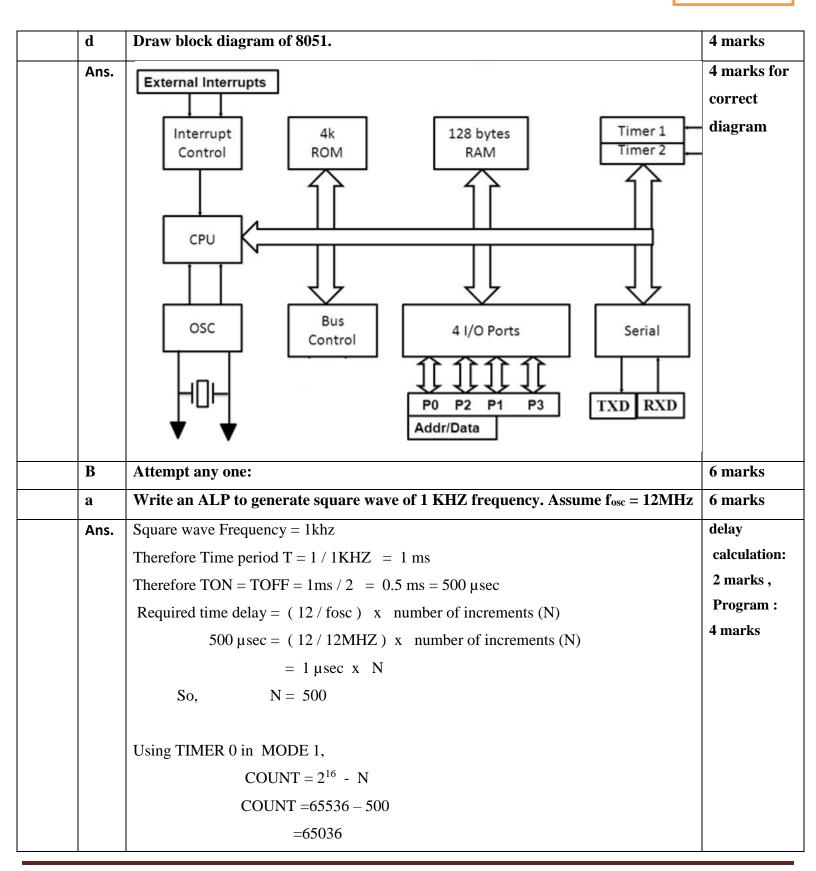


(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

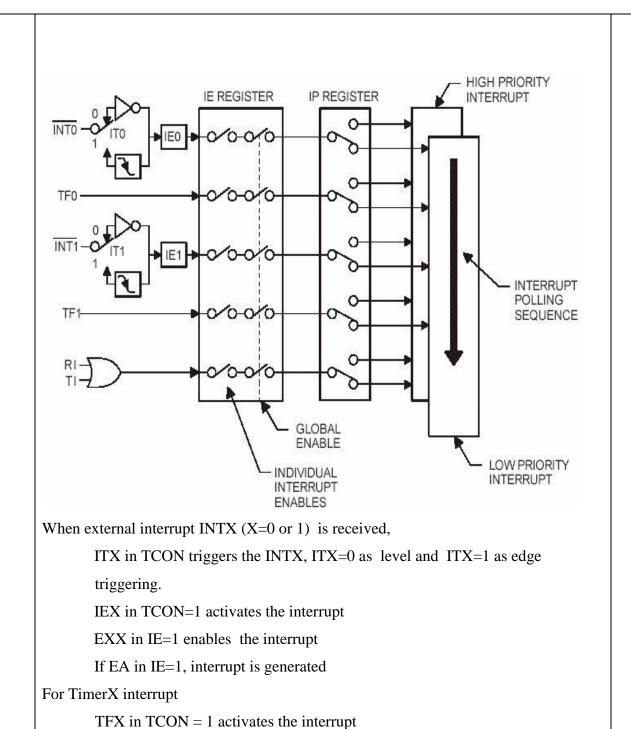
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

		= FE0C H		
		Assembly language program :		
		ORG 0000H		
		MOV TMOD, #01H ; TIME	R 0, MODE 1	
		REP: MOV TL0, #0CH ; Load 1	ower byte of count	
		MOV TH0, #0FEH ; Load I	nigher byte of count	
		SETB TRO ; Start ti	mer 0	
		BACK:JNB TF0, BACK ; Check	if TF0 is SET	
		CLR TRO ; Stop t	he Timer	
		CPL P1.5 ; Comp	lement P1.5	
		CLR TF0 ; Clear	ГF1	
		SJMP REP ; Repea	t	
	b	Draw interrupt structure of 8051	and explain it.	6 marks
	Ans.	Register TCON		3 marks for
		n nt la	Register IE	diagram,
		INTO	EXO	3 marks
		INT1 IT1 On	EX1	for correct
		T I		explanation
		Timer 0 TF0	ETO	
		Times 1 TF1	OR EA Interrupt	
		Timer 1 UART TI OR		
		UART TI OR	ES	
			8051	
			(OR)	
ī				


(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

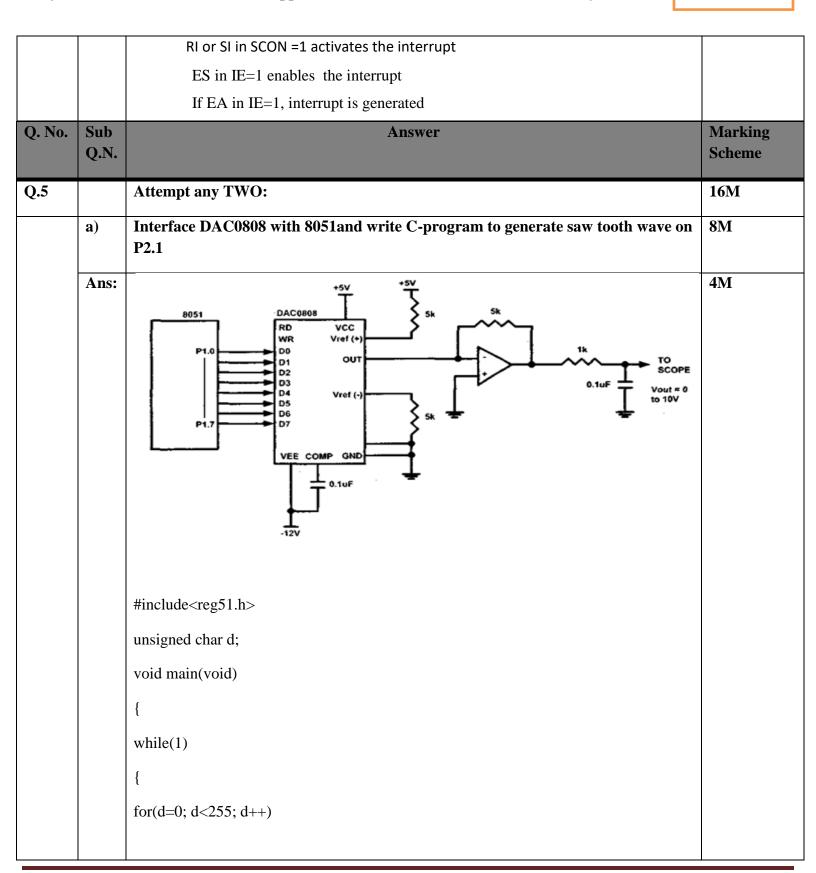
Subject Code:

17509

ETX in IE=1 enables the interrupt

If EA in IE=1, interrupt is generated

For Serial interrupt



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

	{	4M
	P1 = d;	
	}	
	}	
	1	
• `		03.5
b)	Write an ALP to multiply content of internal RAM location 50h and 51h. Store the result at 2000h(LSB) and 2001(MSB) in external RAM.	8M
Ans:	FLOWCHART:	2M
11151		
	(Start)	
	More the content of 50h to A	
	→	
	Move the content of	
	51 h to B	
	Multiply the contents of A & B.	
	Initialise pet by 2000	
	The state of the s	
	More the LSB from A to external memory pointed by PPTR	
	Inclement DPTR	
	Move the MSB from	
	B to A	
	More the content from A to external memory	
	pointed by bPTR	
	(Stop)	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

	PROGRAM:		
	MOV A,50H	; Move the content of 50h to accumulator	
	MOV B,51H	; Move the content of 51h to accumulator	
	MUL AB	; Multiply the contents of A and B register	
	MOV DPTR,#2000H	; Load DPTR with 2000h	
	MOVX @DPTR,A	; Move the LSB to the External Memory pointed by DPTR	
	INC DPTR	; Increment DPTR	4M
	MOV A,B	; Move the MSB from B register to A	Program
	MOVX @DPTR,A	; Move the MSB to the External Memory pointed by DPTR	2M
	END	; End	comment
c)	Explain bitwise shift	operation for right shift and left shift with suitable examples.	8M
Ans:	 When Data is Left shift Ope Example: Syntax : Bitwi [variable]<<< P0=0x3C<< 2 	the data can be shifted by specified number of Positions to Left Shifted Left, trailing zero's are filled with zero. erator is Binary Operator [Bi – two] see Left Shift Operator [Number of Places] on of this instruction 2 times to left: 0	Explanati :2M each Syntax: 1 each, Example 1M each
	Bitwise Right	Shift Operator in C:	
	• It is denoted	by >>	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

	Bit Pattern of the data can be shifted by specified number of Positions to Right When Data is Shifted Right, leading zero"s are filled with zero. Right shift Operator is Binary Operator [Bi – two]. Example: Syntax: Bitwise Right Shift Operator [variable]>>[number of places] P0=0x3C >> 2 After execution of this instruction Shift number 2 times to Right: 3C=0011 1100 0F=0000 1111 So, P0=0x0F NOTE: Example May change. Please check the logic and understanding of students.		
Q.6	a)	Attempt any FOUR: What is stack memory? Explain PUSH and POP instruction.	16M 4M
	Ans:	 The stack memory is part of RAM used by the CPU to store information temporarily. This information may be either data or address. The CPU needs this storage area as there are only a limited amount of registers. 	Stack explanation :2M

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

	4. The register used to access stack memory is called stack pointer.	
	PUSH Instruction: This instruction increments Stack pointer by 1 and then copies the data at the direct address to the location pointed by SP.	PUSH:1N
	POP Instruction:	POP: 1N
	This instruction copies the data at the location pointed by Stack Pointer to the	
	direct address given in the instruction and then decrements Stack pointer by 1.	
b)	Explain the function of RS,R/W and E pins in 16x4 LCD.	4M
Ans:	1. RS: RS is the register select pin used to write display data to the LCD	RS: 2M
	(characters), this pin has to be high when writing the data to the LCD. During	R/W: 1M
	the initializing sequence and other commands this pin should low.	EN: 1M
	2. R/W: Reading and writing data to the LCD for reading the data R/W pin	
	should be high (R/W=1) to write the data to LCD R/W pin should be low	
	(R/W=0).	
	3. EN: Enable pin is for starting or enabling the module. A high to low pulse of	
	about 450ns pulse is given to this pin.	
c)	Explain any four assembler directives.	4M
Ans:	DB : The DB directive is the most widely used data directive in the assembler. It is	1M each
	used to define the 8-bit data. When DB is used to define data, the numbers can be in	
	decimal, binary, hex, or ASCII formats.	
	Example: DATA1 DB 28 (decimal data stored as 1C hex)	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

	 It is a 16-bit register. It holds the address of external and internal program memory. 	(1M size
d) Ans:	Write the size and function of PC and DPTR. PC: (Program Counter)	4M 2M each
1	after the END directive is ignored by the assembler.	43.7
	directive is the last line of an 8051 program, meaning that in the source code anything	
	END : This indicates to the assembler the end of the source (asm) file. The END	
	MOV R3,#NUMBER; R3 = 25H as 25H will be substituted for NUMBER	
	Example: NUMBER EQU 25H	
	EQU : This is used to define a constant without occupying a memory location. When the label appears in the program, constant value will be substituted for the label.	
	ORG 0030H MAIN:	
	LJMP main	
	Example: ORG 0000H	
	by H, it is decimal and the assembler will convert it to hex.	
	that comes after ORG can be either in hex or in decimal. If the number is not followed	
	ORG : The ORG directive is used to indicate the beginning of the address. The number	
	DB "ABCDE" ASCII character array named as Text	
	DATA3 DB 5Fh Text	
	DATA2 DB 01010101B (Binary data)	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

1		f a4:
	It points next instruction to be fetched. It is a second of the latest and the second of the second of the latest and the second of the second of the latest and the second of the seco	function)
	 It is never used to hold the address of the data memory. It cannot be used as data memory location. 	
	It cannot be used as data memory location.	
	DPTR: (Data Pointer)	
	• It is a 16-bit register.	
	It is used to hold the address of the external and internal data memory.	
	 It is used to note the address of the external and internal data memory. It is used to store a 16-bit data. 	
	• It is also divided into two 8-bit registers viz. DPH and DPL.	
	• Each registers can be used to hold a 8-bit data.	
e)	Explain the logic to measure temperature using LM35. Draw interfacing diagram.	4M
Ans:	o Vec ∗sv	2M-
	30pF 40 31 7	DIAGRAM
	30pF □ 12Mptz XTAL1 P2.0-P2.7 Deta bus 16X2 L CD 3 \$\infty \text{ICD}	2M -
	φ Vcc 18 28 14	EXPLANA
	OCCUT 10µF S RESET PLO	TION
	RESET P1.0 2 LM35 sen:	
	10 17 D0 VCC 11 50 Signal Conditioning circuit LM35	
	15 OND 12 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	
	8051	
	17 ADC 100 1 10K 1 10K	
	P1.3 25 A0 0809 Ms 4	
	P1.4 5 Clock generator	
	P1.5 6 22 ALE CLX 4 3 2 1	
	GND 7414 T 0.01µF	
	20	

	• LM 35 is a temperature sensor which gives a change in output voltage of 10 mV	
	for every degree rise in temperature i.e. if the output voltage is 350mV, the	
	temperature ideally will be 35°C.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER WINTER- 17 EXAMINATION

Subject Title: Microcontroller and applications

Subject Code:

•	LM35 is connected to the input of ADC0809 or any other ADC.	
•	ADC converts the analog output voltage of LM35 to corresponding digital value.	
•	This digital value is proportional to the measured temperature.	
•	It can also be converted to corresponding temperature value using look up table and can be displayed in LCD.	